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An absolutely rigid interface inclusion in a bimaterial piezoelectric space under the action of antiplane mechanical and in-plane
electric loadings is analyzed. One zone of the inclusion is electrically insulated while the other part is electrically permeable.
This problem is important for engineering application, but it has not been solved earlier in an analytical way. Presenting all
electromechanical quantities via sectionally analytic vector functions, the combined Dirichlet-Riemann boundary value problem
is formulated. An exact analytical solution of this problem is obtained. Closed form analytical expressions for electromechanical
quantities at the interface are derived. Some of these values are also presented graphically along the corresponding parts of the
material interface. Singular points of the shear strain and the electric displacement are found and the corresponding intensity
factors are determined as well.

1. Introduction

Piezoelectric materials are used in many engineering appli-
cations. These materials are often integrated into sensors,
transducers, and actuators, where they can be exposed
to substantial mechanical and electrical loading. However,
existing microdefects, particularly interface inclusions, can
reduce their strength. Therefore, it is very important to
study the behavior of piezoelectric ceramics with internal
and especially interface defects subjected to the action of
mechanical stresses and electrical fields.

Many important solutions have been obtained for inclu-
sions in electrically passive materials. For example, the prob-
lem of rigid line inclusions in a homogeneous infinite matrix
was studied in [1–6] and an interfacial inclusion between two
dissimilar media was investigated in [7–9]. Rigid line inclu-
sions in a piezoelectric medium were also actively studied.
For instance, Liang et al. [10] and Chen [11] studied the in-
plane and antiplane problems, respectively, of a homogeneous
infinite piezoelectric medium with such inclusions.

Essential progress wasmade concerning the investigation
of rigid inclusions at the interface of piezoelectric materials.
Particularly the electroelastic analysis of a conducting rigid
line inclusion at the interface of two bonded piezoelectric
materials is considered in paper [12]. By combining the
analytic function theory and the Stroh formalism the closed-
form expressions for the field variables were found. In
the paper [13] the generalized two-dimensional problem of
a dielectric rigid line inclusion, at the interface between
two dissimilar piezoelectric media subjected to piecewise
uniform loads at infinity, is studied by means of the Stroh
theory. The problem was reduced to a Hilbert problem,
and then closed-form expressions were obtained. The spe-
cial mixed boundary value problem in which a debonded
conducting rigid line inclusion is embedded at the interface
of two piezoelectric half planes is solved analytically in [14]
by employing Stroh formalism. The model based on the
assumption that all of the physical quantities, i.e., tractions,
displacements, normal component of electric displacements,
and electric potential, are discontinuous across the interface
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defect was used in this paper. The axisymmetric contact
problem of a rigid inclusion embedded in the piezoelectric
bimaterial frictionless interface subjected to simultaneous
far-field compression and electric displacement is studied in
[15]. An arc-shaped conducting rigid line inclusion located at
the interface between a circular piezoelectric inhomogeneity
and an unbounded piezoelectric matrix subjected to remote
uniform antiplane shear stresses and in-plane electric fields is
considered recently in [16].

It should be mentioned that all results concerning the
rigid inclusions at the interface between piezoelectric mate-
rials are related to the cases of one-type electric conditions
at the inclusion. However, in some cases important for
engineering applications these conditions can be mixed, i.e.,
they can change fromone part of the inclusion to another.The
problem in such case becomes mathematically much more
complicated; therefore, the associated analytical solutions
are absent to the authors knowledge. Just such solution is
suggested in the present paper for a certain case of mixed
electrical conditions on the interface inclusion.

2. Basic Equations for a Piezoelectric
Material under Out-of-Plane Mechanical
Loading and In-Plane Electric Loading

For a piezoelectricmaterial the relationship between themain
electromechanical characteristics are defined by the relations
(Parton and Kudryavtsev [17])

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑠𝜀𝑘𝑠 − 𝑒𝑠𝑖𝑗𝐸𝑠,
𝐷𝑖 = 𝑒𝑖𝑘𝑠𝜀𝑘𝑠 + 𝛼𝑖𝑠𝐸𝑠, (1)

where 𝜎𝑖𝑗, 𝜀𝑖𝑗 are the components of stress and strain tensor,𝐷𝑖, 𝐸𝑖 are the components of the electric induction and the
electric field, 𝑐𝑖𝑗𝑘𝑠, 𝑒𝑠𝑖𝑗 are elastic and piezoelectric constants,
and 𝛼𝑖𝑠 are dielectric constants.

The equilibrium equations in the absence of body forces
and free charges are

𝜎𝑖𝑗,𝑗 = 0,
𝐷𝑖,𝑖 = 0. (2)

The expressions for the deformation and electric field
have the form

𝜀𝑖𝑗 = 12 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) ,
𝐸𝑖 = −𝜑,𝑖,

(3)

where 𝑢𝑖 are the components of the displacement vector and𝜑 is the electric potential.
For the out-of-plane mechanical loading and in-plane

electric loading assuming thematerial is transversely isotrop-
ic with the poling direction parallel to the 𝑥3-axis, one has

𝑢1 = 𝑢2 = 0,
𝑢3 = 𝑢3 (𝑥1, 𝑥2) ,
𝜑 = 𝜑 (𝑥1, 𝑥2) .

(4)

Then the constitutive relations take the form

{𝜎3𝑖𝐷𝑖} = R{𝑢3,𝑖𝜑,𝑖 } , (5)

where 𝑖 = 1, 2 and R = [ 𝑐44 𝑒15𝑒15 −𝛼11 ].
Introducing the vectors

u = [𝑢3, 𝜑]𝑇 ,
t = [𝜎32, 𝐷2]𝑇 ,

(6)

one can write

t = Ru,2. (7)

The functions 𝑢3 and 𝜑 satisfy the equations Δ𝑢3 = 0,Δ𝜑 = 0; i.e., they are harmonic. Therefore, present them as
real parts of some analytic functions

u = 2ReΦ (𝑧) = Φ (𝑧) +Φ (𝑧) , (8)

where Φ(𝑧) = [Φ1(𝑧), Φ2(𝑧)]𝑇 is an arbitrary analytic func-
tion of the complex variable 𝑧 = 𝑥1 + 𝑖𝑥2.

Substituting (8) into (7), one gets

t = 𝑖RΦ󸀠 (𝑧) + 𝑖RΦ󸀠 (𝑧). (9)

Using the designationQ = 𝑖R, we arrive to the equations
t = QΦ󸀠 (𝑧) +QΦ󸀠 (𝑧) . (10)

To achieve the purposes of this paper we have to trans-
form further the presentations (8) and (10). Taking into
account that

u󸀠 = Φ󸀠 (𝑧) +Φ󸀠 (𝑧) (11)

and introducing the vectors

k󸀠 = [𝜎32, −𝐸1]𝑇 ,
P = [𝑢󸀠3,D2]𝑇 ,

(12)

the following relations can be formulated

k󸀠 = AΦ󸀠 (𝑧) + AΦ󸀠 (𝑧) , (13)

P = BΦ󸀠 (𝑧) + BΦ󸀠 (𝑧) , (14)

where the matrixes A and B are the following:

A = [𝑄11 𝑄120 1 ] ,

B = [ 1 0
𝑄21 𝑄22] .

(15)
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3. Bimaterial Case

Suppose that the plane (𝑥1, 𝑥2) is composed of two half-
planes 𝑥2 > 0 and 𝑥2 < 0. The presentations (13) and (14)
can be written for regions 𝑥2 > 0 and 𝑥2 < 0 in the form

k(𝑚) = A(𝑚)Φ(𝑚) (𝑧) + A(𝑚)Φ(𝑚) (𝑧) ,
P(𝑚) = B(𝑚)Φ󸀠(𝑚) (𝑧) + B(𝑚)Φ󸀠(𝑚) (𝑧) , (16)

where𝑚 = 1 for the region 1 and𝑚 = 2 for the region 2;A(𝑚)

and B(𝑚) are the matrices A and B for the regions 1 and 2,
respectively; Φ(𝑚)(𝑧) are arbitrary vector functions, analytic
in the regions 1 and 2, respectively.

Next we require that the equality P(1) = P(2) holds true on
the entire axis 𝑥1.Then it follows from (16)

B(1)Φ󸀠(1) (𝑥1 + 𝑖0) + B(1)Φ󸀠(1) (𝑥1 − 𝑖0)
= B(2)Φ󸀠(2) (𝑥1 − 𝑖0) + B(2)Φ󸀠(2) (𝑥1 + 𝑖0) .

(17)

Here 𝐹(𝑥1 ± 𝑖0) designates the limit value of a function𝐹(z) at 𝑦 → 0 from above or below the 𝑥1-axis, respectively.
Equation (17) can be written as

B(1)Φ󸀠(1) (𝑥1 + 𝑖0) − B(2)Φ󸀠(2) (𝑥1 + 𝑖0)
= B(2)Φ󸀠(2) (𝑥1 − 𝑖0) − B(1)Φ󸀠(1) (𝑥1 − 𝑖0) .

(18)

The left and right sides of the last equation can be
considered as the boundary values of the functions

B(1)Φ󸀠(1) (𝑧) − B(2)Φ󸀠(2) (𝑧) ,
B(2)Φ󸀠(2) (𝑧) − B(1)Φ󸀠(1) (𝑧) , (19)

which are analytic in the upper and lower planes, respectively.
But it means that there is a function M(𝑧), which is equal to
the mentioned functions in each half-plane and is analytic in
the entire plane.

Assuming thatM(𝑧)|𝑧→∞ → 0, on the basis of the Liou-
ville theoremwe find that each of the functions in (19) is equal
to 0 for any 𝑧 from the corresponding half-plane. Hence, we
obtain

Φ
󸀠(2) (z) = (B(2))−1 B(1)Φ󸀠(1) (z) for 𝑥2 > 0,
Φ
󸀠(1) (z) = (B(1))−1 B(2)Φ󸀠(2) (z) for 𝑥2 < 0.

(20)

Further, we find the jump of the vector function

⟨k󸀠 (𝑥1)⟩ = k󸀠(1) (𝑥1 + 𝑖0) − k󸀠(2) (𝑥1 − 𝑖0) , (21)

when passing through the interface. Determining from the
first formula (16)

k󸀠(𝑚) (𝑧) = A(𝑚)Φ󸀠(𝑚) (𝑧) + A(𝑚)Φ󸀠(𝑚) (𝑧) (22)

or

k󸀠(𝑚) (𝑥1 ± 𝑖0) = A(𝑚)Φ󸀠(𝑚) (𝑥1 ± 𝑖0)
+ A(𝑚)Φ󸀠(𝑚) (𝑥1 ∓ 𝑖0) ,

(23)

and substituting in (21), one gets

⟨k󸀠 (𝑥1)⟩ = A(1)Φ󸀠(1) (𝑥1 + 𝑖0) + A(1)Φ󸀠(1) (𝑥1 − 𝑖0)
− A(2)Φ󸀠(2) (𝑥1 − 𝑖0)
− A(2)Φ󸀠(2) (𝑥1 + 𝑖0) .

(24)

Finding furtherΦ󸀠(2)(𝑥1 − 𝑖0) = (B(2))−1B(1)Φ󸀠(1)(𝑥1 − 𝑖0)
from second equation of (20) and substituting this expression
together with the first equation of (20) at𝑥2 → +0 in the latest
formula lead to

⟨k󸀠 (𝑥1)⟩ = DΦ󸀠(1) (𝑥1 + 𝑖0) +DΦ󸀠(1) (𝑥1 − 𝑖0) , (25)

where D = A(1) − A(2)(B(2))−1B(1). Introducing a new vector
function

W (𝑧) = {{{
DΦ󸀠(1) (𝑧) , 𝑥2 > 0,
−DΦ󸀠(1) (𝑧) , 𝑥2 < 0, (26)

the last relation can be written as

⟨k󸀠 (𝑥1)⟩ =W+ (𝑥1) −W− (𝑥1) . (27)

From the second relations (16) we have

P(1) (𝑥1, 0) = B(1)Φ󸀠(1) (𝑥1 + 𝑖0)
+ B(1)Φ󸀠(1) (𝑥1 − 𝑖0) .

(28)

Taking into account that on the base of (26)

Φ
󸀠(1) (𝑥1 + 𝑖0) = D−1W (𝑥1 + 𝑖0) ,
Φ
󸀠(1) (𝑥1 − 𝑖0) = − (D −1)−1W (𝑥1 − 𝑖0) ,

(29)

and substituting these relations into (28), leads to

P(1) (𝑥1, 0) = SW+ (𝑥1) − SW− (𝑥1) , (30)

where S = B(1)D−1. Simple calculations show that

S = [A(1) (B(1))−1 − A(2) (B(2))−1]−1 . (31)

Representations (27) and (30) are very convenient for
solving of antiplane problems for bimaterials with cracks and
inclusions at the interface.

It is found out that for the considered class of piezoelectric
materials the matrix S has the following structure:

S = [𝑖𝑠11 𝑠12𝑠21 𝑖𝑠22] , (32)

where all 𝑠𝑘𝑙 (𝑘, 𝑙 = 1, 2) are real.
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Figure 1: An absolutely rigid inclusion at the interface of two
piezoelectric materials with electrically insulated part (𝑐, 𝑎) and
electrically permeable part (𝑎, 𝑏).

4. Formulation of the Problem for an
Absolutely Rigid Inclusion with Mixed
Electrical Condition at the Face

Consider an absolutely rigid thin inclusion 𝑐 ≤ 𝑥1 ≤ 𝑏 at the
interface𝑥2 = 0. It is assumed that this inclusion is electrically
insulated for 𝑐 ≤ 𝑥1 ≤ 𝑎 and is electrically permeable at 𝑎 <𝑥1 < 𝑏 (𝑎 < 𝑏). Such situation can take place, e.g., for a rigid
electrically permeable interface layer having a part covered by
electrical insulator (Figure 1).

Then the boundary conditions at the interface are of the
form

𝜀(1)13 = 𝜀(2)13 = 0,
𝐷(1)2 = 𝐷(2)2 = 0

for 𝑐 < 𝑥1 < 𝑎,
(33)

𝜀(1)13 = 𝜀(2)13 = 0,
⟨𝐸1⟩ = 0
⟨𝐷2⟩ = 0

for 𝑎 < 𝑥1 < 𝑏,
(34)

⟨𝜎23⟩ = 0,
⟨𝐷2⟩ = 0,
⟨𝜀31⟩ = 0,
⟨𝐸1⟩ = 0

for 𝑥1 ∉ (𝑐, 𝑏) .

(35)

We also assume that a vector P∞ = [𝜀∞13 , 𝐷∞2 ]𝑇 is pre-
scribed at infinity.

Consider (30) in the following expanded form:

𝜀(1)13 (𝑥1, 0) = 𝑖𝑠11𝑊+1 (𝑥1) + 𝑠12𝑊+2 (𝑥1)
+ 𝑖𝑠11𝑊−1 (𝑥1) − 𝑠12𝑊−2 (𝑥1) ,

𝐷(1)2 (𝑥1, 0) = 𝑠21𝑊+1 (𝑥1) + 𝑖𝑠22𝑊+2 (𝑥1)
− 𝑠21𝑊−1 (𝑥1) + 𝑖𝑠22𝑊−2 (𝑥1) ,

(36)

in which (32) was taken into account. Combining (36) one
arrives at the presentations

𝜀(1)13 (𝑥1, 0) − 𝑖𝑚𝑗𝐷(1)2 (𝑥1, 0)
= 𝑡𝑗 [𝐹+𝑗 (𝑥1) + 𝛾𝑗𝐹−𝑗 (𝑥1)] ,

(37)

where
𝐹𝑗 (𝑧) = 𝑊2 (𝑧) + 𝑖𝑠𝑗𝑊1 (𝑧) , (38)

and 𝑡𝑗 = 𝑠12 − 𝑚𝑗𝑠22, 𝛾𝑗 = −(𝑠12 + 𝑚𝑗𝑠22)/𝑡𝑗, 𝑠𝑗 = (s11 +𝑚𝑗𝑠21)/t𝑗,𝑚1,2 = ∓√−𝑠11𝑠12/𝑠21𝑠22.
It follows from the last equations that 𝑠1,2 = −𝑚1,2, 𝛾2 =1/𝛾1, and the values𝑚1,2 are real.
Because according to (38) 𝐹+𝑗 (𝑥1) − 𝐹−𝑗 (𝑥1) = 𝑊+2 (𝑥1) −𝑊−2 (𝑥1) + 𝑖𝑠𝑗[𝑊+1 (𝑥1) − 𝑊−1 (𝑥1)], then with use of (27) one

gets

⟨−𝐸1 (𝑥1, 0)⟩ + 𝑖𝑠𝑗 ⟨𝜎23 (𝑥1, 0)⟩ = 𝐹+𝑗 (𝑥1) − 𝐹−𝑗 (𝑥1) . (39)

It is sufficient to apply relations (37) and (39) in the
following analysis only for 𝑗 = 1; therefore, assuming 𝑗 = 1,
(37) and (39) can be presented in the form

𝜀(1)13 (𝑥1, 0) − 𝑖𝑚1𝐷(1)2 (𝑥1, 0)
= 𝑡1 [𝐹+1 (𝑥1) + 𝛾1𝐹−1 (𝑥1)] , (40)

⟨−𝐸1 (𝑥1, 0)⟩ + 𝑖𝑠1 ⟨𝜎23 (𝑥1, 0)⟩
= 𝐹+1 (𝑥1) − 𝐹−1 (𝑥1) , (41)

where𝑚1 = −√−𝑠11𝑠12/𝑠21𝑠22, 𝑠1 = −𝑚1.
Taking into account that for 𝑥1 ∉ (𝑐, 𝑏) the relationships𝐹+1 (𝑥1) = 𝐹−1 (𝑥1) = 𝐹1(𝑥1) are valid, it follows from (40) that

(1 + 𝛾1) 𝑡1𝐹1 (𝑥1) = 𝜀(1)13 (𝑥1, 0) − 𝑖𝑚1𝐷(1)2 (𝑥1, 0)
for 𝑥1 󳨀→ ∞. (42)

Using the fact that the function 𝐹1(𝑧) is analytic in the
whole plane cut along (𝑐, 𝑏) and applying the conditions at
infinity, one gets from the last equation

𝐹1 (𝑧)󵄨󵄨󵄨󵄨𝑧→∞ = 𝜀13 − 𝑖𝐷2, (43)

where

𝜀13 = 𝜀∞13𝑟1 ,
𝐷2 = 𝑚1𝐷∞2𝑟1 ,
𝑟1 = (1 + 𝛾1) 𝑡1.

(44)



www.manaraa.com

Mathematical Problems in Engineering 5

5. Solution of the Problem

Consider now the problem formulated by the interface
conditions (33)–(35) and illustrated by Figure 1. Relations (27)
and (30) and, consequently, (40) and (41) ensure satisfying
equation P(1)(𝑥1, 0) = P(2)(𝑥1, 0) for the whole interface and,
accordingly, satisfying the second and third interface condi-
tions (35). Further satisfaction of first and forth conditions
(35) provides the analyticity of the function 𝐹1(𝑧) for the
whole plane with a cut along the segment (𝑐, 𝑏) of the
interface. Satisfying the remaining boundary conditions (33)
and (34) with use of (40) and (41), one gets the following
equations:

𝐹+1 (𝑥1) + 𝛾1𝐹−1 (𝑥1) = 0 for 𝑐 < 𝑥1 < 𝑎,
Re [𝐹+1 (𝑥1) + 𝛾1𝐹−1 (𝑥1)] = 0,
Re [𝐹+1 (𝑥1) − 𝐹−1 (𝑥1)] = 0

for 𝑎 < 𝑥1 < 𝑏.
(45)

The last two relations lead to the equation

Re𝐹±1 (𝑥1) = 0 for 𝑎 < 𝑥1 < 𝑏. (46)

Introducing further the substitution

𝐹1 (𝑧) = 𝑖Φ1 (𝑧) , (47)

system (34) and (35) can be written in the form

Φ+1 (𝑥1) + 𝛾1Φ−1 (𝑥1) = 0 for 𝑐 < 𝑥1 < 𝑎, (48)

ImΦ±1 (𝑥1) = 0 for 𝑎 < 𝑥1 < 𝑏. (49)

Taking into account that the function Φ1(𝑧) is analytic
outside the segment [𝑐, 𝑏] and using the prescribed values of
the stress and the electric fields at infinity, one gets, from (43)
and (44), the following condition forΦ1(𝑧) at infinity

Φ1 (𝑧)󵄨󵄨󵄨󵄨𝑧→∞ = 𝐸∗1 − 𝑖𝜎∗32, (50)

where 𝐸∗1 = −𝐷2, 𝜎∗32 = 𝜀13, 𝑟1 = 𝑡1(1 + 𝛾1).
Relations (48) and (49) present the combined Dirichlet-

Riemann boundary value problem. The solution of such
problem concerning a rigid stamp was found by Nahnein
andNuller [18] and, concerning an in-plane interface crack, it
was developed by Loboda [19] and Kozinov et al. [20]. Using
these results, an exact solution of problem (37) and (38) is the
following.

Φ1 (𝑧) = 𝑃 (𝑧)𝑋1 (𝑧) + 𝑄 (𝑧)𝑋2 (𝑧) , (51)

where
𝑃 (𝑧) = 𝐶1𝑧 + 𝐶2,
𝑄 (𝑧) = 𝐷1𝑧 + 𝐷2,
𝑋1 (𝑧) = 𝑖𝑒𝑖𝜙(𝑧)

√(𝑧 − 𝑐) (𝑧 − 𝑏) ,
𝑋2 (𝑧) = 𝑒𝑖𝜙(𝑧)

√(𝑧 − 𝑐) (𝑧 − 𝑎) ,
𝜑 (𝑧) = 2𝜀 ln √(𝑏 − 𝑎) (𝑧 − 𝑐)

√𝑙 (𝑧 − 𝑎) + √(𝑎 − 𝑐) (𝑧 − 𝑏) ,
𝜀 = 12𝜋 ln 𝛾1,
𝑙 = 𝑏 − 𝑐,
𝐶1 = −𝜎∗32 cos𝛽 − 𝐸∗1 sin𝛽,
𝐷1 = 𝐸∗1 cos𝛽 − 𝜎∗32 sin𝛽,
𝐶2 = −𝑐 + 𝑏2 𝐶1 − 𝛽1𝐷1,
𝐷2 = 𝛽1𝐶1 − 𝑐 + 𝑎2 𝐷1,
𝛽 = 𝜀 ln 1 − √1 − 𝜆1 + √1 − 𝜆 ,
𝛽1 = 𝜀√(𝑎 − 𝑐) (𝑏 − 𝑐),
𝜆 = 𝑏 − 𝑎𝑙 .

(52)

This solution satisfies the condition at infinity (50) and the
equation ∫𝑏

𝑐
[𝐹+1 (𝑥1) − 𝐹−1 (𝑥1)]𝑑𝑥1 = 0 (Knysh et al. [21]). The

last equation is obtained using (41) from the conditions of the
electric potential uniqueness for overcoming the inclusion
and the requirement of its equilibrium.

Using solution (51) together with formula (40), one gets

𝑚1𝐷(1)2 (𝑥1, 0) + 𝑖𝜀(1)13 (𝑥1, 0) = − [ 𝑄 (𝑥1)√𝑥1 − 𝑎
+ 𝑖𝑃 (𝑥1)√𝑥1 − 𝑏]

𝑟1 exp [𝑖𝜑 (𝑥1)]√𝑥1 − 𝑐 for 𝑥1 > 𝑏,
(53)

𝑚1𝐷(1)2 (𝑥1, 0)
= − 𝑡1𝑃 (𝑥1)
√(𝑥1 − 𝑐) (𝑏 − 𝑥1) [(1 − 𝛾1) cosh𝜑0 (𝑥1)

+ (1 + 𝛾1) sinh𝜑0 (𝑥1)]
+ − 𝑡1𝑄 (𝑥1)
√(𝑥1 − 𝑐) (𝑥1 − 𝑎) [(1 + 𝛾1) cosh𝜑0 (𝑥1)

+ (1 − 𝛾1) sinh𝜑0 (𝑥1)] for 𝑎 < 𝑥1 < 𝑏,

(54)

where 𝜑0(𝑥1) = 2𝜀 tan−1√(𝑎 − 𝑐)(𝑏 − 𝑥1)/((𝑏 − 𝑐)(𝑥1 − 𝑎)).
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Substituting solution (51) into (41) gives the following
formulas:

𝑠1 ⟨𝜎23 (𝑥1, 0)⟩ + 𝑖 ⟨𝐸1 (𝑥1, 0)⟩ = 2√𝛼[ 𝑃 (𝑥1)√𝑏 − 𝑥1
− 𝑖 𝑄 (𝑥1)√𝑎 − 𝑥1]

exp [𝑖𝜑∗ (𝑥1)]√𝑥1 − 𝑐 for 𝑐 < 𝑥1 < 𝑎,
(55)

⟨𝜎23 (𝑥1, 0)⟩ = 2𝑠1√𝑥1 − 𝑐 [
𝑃 (𝑥1)√𝑏 − 𝑥1 cosh𝜑0 (𝑥1)

+ 𝑄 (𝑥1)√𝑥1 − 𝑎 sinh𝜑0 (𝑥1)] for 𝑎 < 𝑥1 < 𝑏,
(56)

where 𝜑∗(𝑥1) = 2𝜀 ln(√(𝑏 − 𝑎)(𝑥1 − 𝑐)/(√𝑙(𝑎 − 𝑥1) +√(𝑎 − 𝑐)(𝑏 − 𝑥1))), 𝛼 = (𝛾1 + 1)2/(4𝛾1).
It is very important that the obtained solution is not

oscillating in this case at the right crack tip and, therefore,
commonly used intensity factors can be introduced. Thus,
we introduce further the following mechanical strain and
electrical displacement intensity factors (IFs):

𝐾𝐷 = lim
𝑥1→𝑎+0

√2𝜋 (𝑥1 − 𝑎)𝐷(1)2 (𝑥1, 0) ,
𝐾𝜀 = lim
𝑥1→𝑏+0

√2𝜋 (𝑥1 − 𝑏)𝜀(1)13 (𝑥1, 0) .
(57)

Using (54) and taking into account that 𝜑0(𝑎) = ln√𝛾1,
one can find

𝐾𝐷 = 𝑟1𝑄 (𝑎)𝑚1√𝑎 − 𝑐√
2𝜋𝛼 . (58)

The intensity factor 𝐾𝜀 can be found from formula (53)
and can be written in the form

𝐾𝜀 = 𝑟1√2𝜋𝑙 𝑃 (𝑏) . (59)

Substituting the expressions for 𝑃(𝑏) and 𝑄(𝑎) one gets
𝐾𝐷 = 1𝑚1√

𝜋𝑙2𝛼 [√1 − 𝜆 (𝜀∞13 cos𝛽 − 𝑚1𝐷∞2 sin𝛽)
− 2𝜀 (𝜀∞13 sin𝛽 + 𝑚1𝐷∞2 cos𝛽)] ,

(60)

𝐾𝜀 = √𝜋𝑙2 [(𝜀∞13 sin𝛽 + 𝑚1𝐷∞2 cos𝛽)
+ 2𝜀√1 − 𝜆 (𝜀∞13 cos𝛽 − 𝑚1𝐷∞2 sin𝛽)] .

(61)

Use of (55) for 𝑥1 → 𝑎−0 permits obtaining the following
expressions of ⟨𝜎23(𝑥1, 0)⟩ via the stress intensity factor 𝐾𝜀:
⟨𝜎23 (𝑥1, 0)⟩ = − 2𝛼𝑟1𝑠1

𝐾𝜀
√2𝜋 (𝑎 − 𝑥1)

for 𝑥1 󳨀→ 𝑎 − 0.
(62)

−0.05

0

0.05

0.1

0.15

0.2

0.25

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004

IIIII

I
x1

⟨23 (x1, 0)⟩

Figure 2: The shear stress ⟨𝜎23(𝑥1, 0)⟩ jump distribution over the
insulated region of the inclusion for different values of 𝜀∞13 .
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Figure 3: The electric displacement𝐷(1)2 (𝑥1, 0) for 𝑥1 ∈ (𝑎, 𝑏).

6. Numerical Illustration

The results for the shear stress jump ⟨𝜎23(𝑥1, 0)⟩ for 𝑐 =−10mm, 𝑏 = 10mm,𝐷∞2 = 0.005C/m2, and different values
of 𝜀∞13 are shown in Figure 2. Lines I, II, and III in this figure
correspond to 𝜀∞13 = 0.0001, 0.00015, 0.0002, respectively.The
results for the electric displacement𝐷(1)2 (𝑥1, 0) for 𝑥1 ∈ (𝑎, 𝑏)
and 𝑥1 > 𝑏 are shown in Figures 3 and 4, respectively. The
variation of the strain 𝜀(1)13 (𝑥1, 0) on the inclusion continuation
is shown in Figure 5.The same values of 𝜀∞13 as in Figure 2were
chosen in Figures 3–5. The materials with the characteristics𝑐(1)44 = 43,7 ⋅ 109 Pa, 𝑒(1)15 = 17C/m2, 𝛼(1)11 = 15,1 ⋅ 10−9 C/(V⋅m),𝑐(2)44 = 42,47 ⋅ 109 Pa, 𝑒(2)15 = −0, 48C/m2, and 𝛼(2)11 = 0,0757 ⋅10−9 C/(V⋅m) [22] were used for these calculations.

It can be seen from the results in Figure 2 that the stress
jump is sufficiently small at the point a, but it grows with
tending 𝑥1 to the left tip of the inclusion. On the other
hand the electric displacement 𝐷(1)2 (𝑥1, 0) essentially grows
at the right neighborhood of the point a (Figure 3) and keeps
moderate values at the left vicinity of the right crack tip. It is
interesting to note that𝐷(1)2 (𝑥1, 0) remains limited at the right
vicinity of the point 𝑏 and, moreover, it modestly decreases
at a distance from this point (Figure 4). At the same time as
it follows from Figure 5 the shear deformation 𝜀(1)13 (𝑥1, 0) is
singular at the right neighborhood of the point 𝑏. Therefore,
it grows very fast for 𝑥1 tending to this point and it promptly
decreases a distance from it.
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Figure 4: The electric displacement𝐷(1)2 (𝑥1, 0) for 𝑥1 > 𝑏.
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7. Conclusion

A rigid inclusion between two semi-infinite piezoelectric
spaces with electrically insulated and electrically permeable
parts of the crack faces under the action of antiplanemechan-
ical and in-plane electric loadings has been analyzed. This
problem is important for engineering application, because
the presence of inclusions disturbs the field variables in the
matrixes and as a result affects the load-carrying capacity
of engineering structure. Although such situation can take
place for any engineering device containing piezoelectric
element, it has not been investigated earlier in an analytical
way to the authors’ knowledge. Firstly the electromechanical
quantities are presented by using of sectionally analytic vector
functions. A combined Dirichlet-Riemann boundary value
problem (48) and (49) is formulated and its exact analytical
solution is derived. Analytical expressions (53)–(56) for the
main electromechanical characteristics along the interface
are presented in a closed form. Singular points of these values
and the stress and electric intensity factors are determined.
The variation of the shear stress jump ⟨𝜎23(𝑥1, 0)⟩, electric
displacement 𝐷(1)2 (𝑥1, 0), and the strain 𝜀(1)13 (𝑥1, 0) along
different sections of the inclusion and its continuation are
presented in a graphical form for certain positions of the
point 𝑎 dividing the electrically insulated and electrically
permeable zones of the inclusion.
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